在原子尺度观察组织结构并理解它和性质之间的关系是物质科学追求的目标之一. 纳米科技、信息器件微型化、先进制造精密化等领域的快速发展, 对材料显微表征深入到原子排列、电子结构层次起到了重要的推动作用. 集形貌观察、结构诠释、元素分析于一身的透射电子显微镜近年来因像差校正器的突破而有望将上述三项功能都推进到原子分辨水平. 本文介绍像差校正电子显微镜给材料显微研究带来的新契机: (1)像差校正电子显微学(提高分辨率、减少离位效应、负球差成像、系列离焦像); (2)走向原子柱元素分辨的化学分析; (3)三维原子像; (4)复杂结构的界面; (5)时间分辨电子显微术; (6)电子全息; (7)原位电子显微术(较大极靴间隙).
In matter science to observe the structure and to understand it's correlation with property in atomic scale is among the aims. Nano-science and technology, microminiaturization of IT devices, higher precision in advanced manufacture $etc$. play an important role to promote microscopic characterization to go deeply to atomic and even electronic level. Based upon the break-through of the aberration corrector the three functions of morphology observation, crystal structure determination and element analysis, provided by transmission electron microscope in recent years have expected to reach atomic resolution standard. Here we introduce the capabilities and prospects for microstructure characterization of materials with these new electron microscopes: (1) aberration-corrected electron microscopy (improving resolution; reducing delocalization effect; negative spherical aberration imaging; defocus-series processing images); (2) a high-resolution probe for imaging and spectroscopy; (3) three-dimensional atomic imaging; (4) interfaces in the complicated structure; (5) time resolution electron microscopy; (6) electron holography; (7) in situ electron microscopy with larger gap in pole piece.
参考文献
[1] | |
[2] | |
[3] | |
[4] | |
[5] | |
[6] | |
[7] | |
[8] | |
[9] | |
[10] | |
[11] | |
[12] | |
[13] | |
[14] | |
[15] | |
[16] | |
[17] |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%